Jumat, 29 April 2016

protein



BAB 1
PENDAHULUAN
A.    Latar Belakang
Protein (protos yang berarti ”paling utama”) adalah senyawa organik kompleks yang mempunyai bobot molekul tinggi yang merupakan polimer dari monomer-monomer asam amino yang dihubungkan satu sama lain dengan ikatan peptida. Peptida dan protein merupakan polimer kondensasi asam amino dengan penghilangan unsur air dari gugus amino dan gugus karboksil.
            Jika bobot molekul senyawa lebih kecil dari 6.000, biasanya digolongkan sebagai polipeptida. Proetin banyak terkandung di dalam makanan yang sering dikonsumsi oleh manusia. Seperti pada tempe, tahu, ikan dan lain sebagainya. Secara umum, sumber dari protein adalah dari sumber nabati dan hewani. Protein sangat penting bagi kehidupan organisme pada umumnya, karena ia berfungsi untuk memperbaiki sel-sel tubuh yang rusak dan suplai nutrisi yang dibutuhkan tubuh. Maka, penting bagi kita untuk mengetahui tentang protein dan hal-hal yang berkaitan dengannya. Protein merupakan salah satu dari biomolekul raksasa selain polisakarida, lipid dan polinukleotida yang merupakan penyusun utama makhluk hidup.
            Protein adalah senyawa organik kompleks berbobot molekul tinggi yang merupakan polimer dari monomer-monomer asam amino yang dihubungkan satu sama lain dengan ikatan peptida. Molekul protein itu sendiri mengandung karbon, hidrogen, oksigen, nitroge dan kadang kala sulfur serta fosfor.Protein dirumuskan oleh Jons Jakob Berzelius pada tahun 1938.
B.     Rumusan Masalah
1.       Apa pengertian protein?
2.       Apa jenis-jenis protein?
3.       Apa Sifat-sifat protein?
4.       Klasifikasi protein
5.        Bagaimana ikatan peptida pada protein?
6.        Bagaimana struktur protein?
7.        Bagaimana sintesis protein ?
8.        Apa manfaat dan fungsi protein?
9.        Apa dampak kelebihan dan kekurangan   protein?
C.    Tujuan
1.      Mengetahui  pengertian protein
2.      Mengetahui jenis-jenis protein
3.      Mengetahui Sifat-sifat protein
4.      Mengetahui klasifikasi protein
5.       Mengetahui ikatan peptida pada protein
6.       Mengetahui  struktur protein
7.       Mengetahui sintesis protein
8.       Mengetahui manfaat dan fungsi protein
9.      Mengetahui dampak kelebihan dan kekurangan protein


















BAB II
PEMBAHASAN
A.    Pengertian Protein
            Protein adalah senyawa organik kompleks berbobot molekul tinggi yang merupakan polimer dari monomer – monomer asam amino yang dihubungkan satu sama lain dengan ikatan peptida. Molekul protein mengandung karbon, hidrogen, oksigen, nitrogen dan kadang kala sulfur serta fosfor . Protein berperan penting dalam struktur dan fungsi semua sel makhluk hidup dan virus. Kebanyakan protein merupakan enzim atau subunit enzim. Jenis protein lain berperan dalam fungsi struktural atau mekanis, seperti misalnya protein yang membentuk batang dan sendi sitoskeleton.
            Protein terlibat dalam sistem kekebalan (imun) sebagai antibodi, sistem kendali dalam bentuk hormon, sebagai komponen penyimpanan (dalam biji) dan juga dalam transportasi hara. Sebagai salah satu sumber gizi, protein berperan sebagai sumber asam amino bagi organisme yang tidak mampu membentuk asam amino tersebut (heterotrof). Protein merupakan salah satu dari biomolekul raksasa, selain polisakarida,lipid, dan polinukleotida, yang merupakan penyusun utama makhluk hidup. Selain itu, protein merupakan salah satu molekul yang paling banyak diteliti dalam biokimia.
            Protein ditemukan oleh Jöns Jakob Berzelius pada tahun1838. Biosintesis protein alami sama dengan ekspresi genetik . Kode genetik yang dibawa DNA ditranskripsi menjadi RNA, yang berperan sebagai cetakan bagi translasi yang dilakukan ribosom. Sampai tahap ini, protein masih “mentah”, hanya tersusun dari asam amino proteinogenik. Melalui mekanisme pascatranslasi, terbentuklah protein yang memiliki fungsi penuh secara biologi.Sumber – sumber protein berasal dari Daging, Ikan, Telur , Susu, dan produk sejenis Quark , tumbuhan berbiji ,suku polong-polongan dan kentang.

B.     Jenis - Jenis Protein
Jenis-jenis protein adalah sebagai berikut:
a.       Hormon adalah bahan kimia berbasis protein yang disekresikan oleh kelenjar endokrin. Hormon adalah pembawa pesan kimiawi, yang mengirimkan sinyal dari satu sel ke sel yang lain.
b.       Protein enzimatik mempercepat aktivitas metabolisme dalam sel.
c.        Protein struktural adalah komponen penting dari tubuh. Protein struktural seperti kolagen membentuk kerangka ikat dalam jaringan tubuh, dan keratin merupakan komponen utama dari rambut, kulit dan kuku.
d.       Protein defensif seperti antibodi dan imunoglobulin adalah bagian inti dari sistem kekebalan tubuh.
e.        Protein adalah tempat penyimpanan ion terutama mineral dalam tubuh, seperti potasium, zat besi dll
f.        Transportasi Protein membawa bahan penting untuk sel-sel.
g.        Reseptor Protein yang terletak di bagian luar dari sel, mereka mengontrol zat yang keluar dan masuk ke dalam sel.
h.       Protein kontraktil mengontrol kekuatan dan kecepatan kontraksi otot dan jantung.
C.    Sifat-sifat Protein
a.       Ionisasi
Protein yang larut dalam air akan membentuk ion yang mempunyai muatan positif dan negative. Dalam suasana asam molekul protein akan membentuk ion positif, sedangkan dalam suasana basa akan membentuk ion negative. Protein mempunyai isolistrik yang berbeda-beda.


b.      Denaturasi
Beberapa jenis protein sangat peka terhadap perubahan lingkungannya.Suatu protein mempunyai arti bagi tubuh apabila protein tersebut di dalam tubuh dapat melakukan aktivitas biokimiawinya yang menunjang kebutuhan hidup.Aktivitas ini banyak tergantung pada struktur dan konformasi molekul protein berubah,misalnya oleh perubahan suhu,Ph atau karena terjadinya suatu reaksi dengan senyawa lain,ion-ion logam,maka aktivitas biokimiawinya akan berkurang.perubahan konformasi alamiah menjadi suatu konformasi yang tidak menentu merupakan suatu proses yang disebut denaturasi.Proses denaturasi ini kadang-kadang dapat berlangsung secara reversible,kadang-kadang tidak.Penggumpalan protein biasanya didahului oleh proses denaturasi yang berlangsung dengan baik pada titik isolistrik protein tersebut.
c.        V iskositas
Viskositas adalah tahanan yang timbul aleh adanya gesekan antara molekul-molekul di dalam zat cair yang mengalir.Suatu larutan protein dalam air mempunyai viskositas atau kekentalan yang relative lebih besar daripada viskositas air sebagai pelarutnya.Pada umumnya viskositas suatu larutan tidak ditentukan atau diukur secara absolute, tetapi ditentukan viskositas relatif, yaitu dibandingkan terhadap viskositas zat cair tertentu.Alat yang digunakan untuk menentukan viskositas ini ialah viscometer Oswald.
d.      Kristalisasi
Banyak protein yang telah dapat diperoleh dalam bentuk Kristal. Meskipun demikian proses kristalisasi untuk berbagai jenis protein tidak selalu sama, artinya ada yang dengan mudah dapat terkristalisasi, tetapi ada pula yang sukar.Beberapa enzim antara pepsin, tripsin, katalase, dan urease telah dapat diperoleh dalam bentuk Kristal. Albumin pada serum atau telur sukar dikristalkan. Proses kristalisasi protein sering dilakukan dengan jalan penambahan garam ammoniumsulfat atau NaCl pada larutan dengan pengaturan pH pada titik isolistriknya. Kadang-kadang dilakukan pula penambahan asetonatau alcohol dalam jumlah tertentu. Pada dasarnya semua usaha yang dilakukan itu dimaksudkan untuk menurunkan kelarutan protein dan ternyata pada titik isolistrik kelarutan protein paling kecil, sehingga mudah dapat dikristalkan dengan baik.
e.       System koloid
Pada tahun 1861 Thomas Graham membagi zat-zat kimia dalam dua kategori, yaitu zat yang dapat menembus membran atau kertas perkamen dan zat yang tidak dapat menembus membran. Oleh karena yang mudah menembus membrane adalah zat yang dapat mengkristal, maka golongan ini disebut kristaloid, sedangkan golongan lain yang tidak dapat menembus membrane disbut koloid. Pengertian koloid pada waktu ii lebih banyak dihubungkan dengan besarnya molekul atau pada bobot molekul yang besar. Molekul yang besar atau molekul makro apabila dilarutkan dalam air mempunyai sifat koloid, yaitu tidak dapat menembus membrane atau kertas perkamen, tetapi tidak cukup besar sehigga tidak dapat mengendap secara alami. System koloid adalah system yang heterogen, terdiri atas dua fase, yaitu partikel keci yang terdispersi dan medium atau pelarutnya. Pada umumnya partiel koloid mempunyai ukuran antara 1 milimikaro-100 milimikro, namun batas ini tidak selalu tetap, mungkin lebih besar. Bobot molekul beberapa protein telah ditentukan berdasarkan kecepatan pengendapan dengan menggunakan ultrasentrifuga yang mempunyai kecepatan putar kira-kira 60.000 putaran per menit.
D.    Klasifikasi protein
  1. Berdasarkan bentuknya, protein dikelompokkan sebagai berikut :
a)Protein bentuk serabut (fibrous)
Protein ini terdiri atas beberapa rantai peptida berbentu spiral yang terjalin. Satu sama lain sehingga menyerupai batang yang kaku. Karakteristik protein bentuk serabut adalah rendahnya daya larut, mempunyai kekuatan mekanis yang tinggi untuk tahan terhadap enzim pencernaan. Kolagen merupakan protein utama jaringan ikat. Elasti terdapat dalam urat, otot, arteri (pembuluh darah) dan jaringan elastis lain. Keratini adalah protein rambut dan kuku. Miosin merupakan protein utama serat otot.
b)Protein Globuler
Berbentuk bola terdapat dalam cairan jaringan tubuh. Protein ini larut dalam larutan garam dan encer, mudah berubah dibawah pengaruh suhu, konsentrasi garam dan mudah denaturasi. Albumin terdapat dalam telur, susu, plasma, dan hemoglobin. Globulin terdapat dalam otot, serum, kuning telur, dan gizi tumbuh-tumbuhan. Histon terdapat dalam jaringan-jaringan seperti timus dan pancreas. Protamin dihubungkan dengan asam nukleat.
c)Protein Konjugasi
Merupakan protein sederhana yang terikat dengan baha-bahan non-asam amino. Nukleoprotein terdaoat dalam inti sel dan merupakan bagian penting DNA dan RNA. Nukleoprotein adalah kombinasi protein dengan karbohidrat dalam jumlah besar. Lipoprotein terdapat dalam plasma-plasma yang terikat melalui ikatan ester dengan asam fosfat sepertu kasein dalam susu. Metaloprotein adalah protein yang terikat dengan mineral seperti feritin dan hemosiderin adalah protein dimana mineralnya adalah zat besi, tembaga dan seng.
  1. Menurut kelarutannya, protein globuler dibagi menjadi :
Albumin     : laut dalam air terkoagulasi oleh panas. Contoh : albumin telur, albumin serum.
Globulin     :    tidak larut air, terkoagulasi oleh panas, larut dalam larutan garam, mengendap dalam larutan garam, konsentrasi meningkat. Contoh : Ixiosinogen dalam otot.
Glutelin     :     tidak larut dalam pelarut netral tapi tapi larut dalam asam atau basa encer. Contoh : Histo dalam Hb.
Plolamin/Gliadin:    larut dalam alcohol 70-80% dan tidak larut dalam air maupun alkohol absolut. Contoh : prolaamin dalam gandum.
Histon     :     Larut dalam air dasn tak larut dalam ammonia encer. Contoh : Hisron             dalam Hb.
Protamin     :     protein paling sederhana dibanding protein-protein lain, larut dalam air dan         tak terkoagulasi oleh panas. Contoh : salmin dalam ikatan salmon.
  1. Berdasarkan senyawa pembentuk, terbagi sebagai berikut:
Protein sederhana (protein saja ) Contoh : Hb
a)Protein Kojugasi dan Senyawa Non Protein
Protein yang mengandung senyawa lain yang non protein disebut protein konjugasi, sedang protein yang mengandung senyawa non protein disebut protein sederhana. Contoh : 9 Glikoprotein terdapat pada hati.
Merupakan protein sederhana yang terikat dengan baha-bahan non-asam amino. Nukleoprotein terdaoat dalam inti sel dan merupakan bagian penting DNA dan RNA. Nukleoprotein adalah kombinasi protein dengan karbohidrat dalam jumlah besar. Lipoprotein terdapat dalam plasma-plasma yang terikat melalui ikatan ester dengan asam fosfat sepertu kasein dalam susu. Metaloprotein adalah protein yang terikat dengan mineral seperti feritin dan hemosiderin adalah protein dimana mineralnya adalah zat besi, tembaga dan seng.
d.       Berdasarkan keberadaan asam amino esensial. Dikelompokkan kedelapan asam amino esensial yang harus disediakan dalam bentuk jadi dalam menu makanan yang dikonsumsi sehari-hari.
·         Isoleusin
·         Leussin
·         Lisin
·         Methionin (asam amino esensial), fungsinya dapat digantikan sistin (semi esensial) secara tidak sempurna.
·         Penilalanin, yang fungsinya dapat digantikan tirosin (semi esensial) tidak secara sempurna, akan tetapi paling tidak dapat menghematnya.
·         Threonin
·         Triptopan
·         Valin
E.Ikatan Peptida
Di dalam protein, asam-asam amino diikat bersama melalui ikatan peptida, yaitu ikatan C–N hasil reaksi kondensasi antara gugus karboksil dengan gugus amino dari asam amino lain. Perhatikan reaksi kondensasi berikut.Gambar

               Reaksi tersebut merupakan contoh dipeptida, yaitu molekul yang dibentuk melalui ikatan peptida dari dua asam amino. Suatu polipeptida (protein) adalah polimer yang dibentuk oleh sejumlah besar asam amino melalui ikatan peptida membentuk rantai polimer.
               Penamaan dipeptida atau tripeptida disesusaikan dengan nama asam amino yang berikatan. Huruf akhir dari nama asam amino yang disatukan diganti dengan huruf l’. Contoh, jika alanin dan glisin menjadi dipeptida, nama dipeptidanya adalah alanilglisin.


F. Struktur Protein
Ada 4 tingkat struktur protein yaitu struktur primer, struktur sekunder, struktur tersier, dan struktur kuartener
a.       Struktur primer
             Struktur primer adalah urutan asam-asam amino yang membentuk rantai polipeptida. Struktur primer protein merupakan urutan asam amino penyusun proteinyangdihubungkan melalui ikatan peptida (amida). Frederick Sanger merupakan ilmuwan yangberjasa dengan temuan metode penentuan deret asam amino pada protein, denganpenggunaan beberapa enzim protease yang mengiris ikatan antara asam amino tertentu,menjadi fragmen peptida yang lebih pendek untuk dipisahkan lebih lanjut dengan bantuankertas kromatografik. Urutan asam amino menentukan fungsi protein, pada tahun 1957,Vernon Ingram menemukan bahwa translokasi asam amino akan mengubah fungsi protein, danlebih lanjut memicu mutasi genetik.
b.      Struktur sekunder
             Struktur sekunder protein bersifat reguler, pola lipatan berulang dari rangka protein.Dua pola terbanyak adalah alpha helix dan beta sheet.Struktur sekunder protein adalah struktur tiga dimensi lokal dari berbagai rangkaian asam amino pada protein yang distabilkan oleh ikatan hidrogen. Berbagai bentuk struktur sekunder misalnya ialah sebagai berikut:
a) alpha helix (α-helix, “puntiran-alfa”), berupa pilinan rantai asam-asam amino berbentuk seperti spiral:
b) beta-sheet (β-sheet, “lempeng-beta”), berupa lembaran-lembaran lebar yang tersusun dari sejumlah rantai asam amino yang saling terikat melalui ikatan hidrogen atau ikatan tiol (S-H);
c)beta-turn,(β-turn,“lekukan-beta”);
d)gamma-turn,(γ-turn,“lekukan-gamma”).
c.       Struktur tersier
                        Struktur tersier protein adalah lipatan secara keseluruhan dari rantai polipeptida sehingga membentuk struktur 3 dimensi tertentu.Sebagai contoh, struktur tersier enzim sering padat, berbentuk globuler.Struktur tersier yang merupakan gabungan dari aneka ragam dari struktur sekunder. Struktur tersier biasanya berupa gumpalan.Beberapa molekul protein dapat berinteraksi secara fisik tanpa ikatan kovalen membentuk oligomer yang stabil (misalnya dimer, trimer, atau kuartomer) dan membentuk struktur kuartener.
d.       Struktur kuartener
a)      Beberapa protein mengandung lebih dari satu rantai polipeptida, asosiasi rantai polipeptida ini mengacu pada struktur kuartener.
b)      Setiap rantai polipeptida disebut subunit A.
c)      Subunit dapat menjadi orang-orang yang sama atau berbeda. Contoh: Hemoglobin membawa oksigen komponen darah terdiri dari dua rantai polipeptida, satu dengan 141 asam amino dan yang lainnya adalah jenis yang berbeda dari 146 asam amino.
G. Proses Sintesis Protein
Proses sintesis atau pembentukan protein memerlukan adanya molekul RNA yang merupakan materi genetik di dalam kromosom, serta DNA sebagai pembawa sifat keturunan. Informasi genetik pada double helix DNA berupa kode-kode sandi atau kode genetik. Nah, kode-kode sandi tersebut nantinya akan dibawa atau dicetak untuk membentuk RNA. Informasi berupa urutan kode-kode sandi pada RNA akan dirangkai menjadi asam-asam amino, peptida, polipeptida, sampai terbentukprotein.
     Protein-protein yang terbentuk akan menyusun sebagian besar komponen di dalam tubuh. Contoh protein sebagai komponen penyusun tubuh adalah miosin, aktin, keratin, kolagen, hemoglobin, dan insulin.
     Variasi dari 20 macam asam amino yang ada, dapat membentuk protein yang berbeda-beda. Oleh karena itu, setiap individu akan mempunyai bermacam-macam protein yang berbeda pula satu sama
lain. Lalu, bagaimana hubungan sintesis protein dengan sifat-sifat individu?
          Nah, seperti telah disebutkan sebelumnya, protein akan menyusun komponen tubuh. Setiap komponen yang berbeda tentunya akan menghasilkan sifat dan fungsi yang berbeda pula. Dengan demikian, protein dikatakan dapat mengekspresikan sifat pada individu. Sebagai contoh, individu yang mempunyai kadar hemoglobin yang rendah akan menunjukkan sifat atau ciri yang berbeda dengan individu yang berkadar hemoglobin tinggi. Apa sajakah tahapan dalam sintesis protein?
Gambaran Proses sintesis protein secara umum.png
Tahapan Sintesis Protein

     Pada tahun 1950, Paul Zamecnik melakukan percobaan untuk mengetahui tahapan dan tempat terjadinya sintesis protein. Paul menginjeksikan asam amino radioaktif ke tubuh tikus dan berhasil
menjelaskan tempat terjadinya sintesis protein, yaitu di dalam ribosom. Selanjutnya, penelitian dilakukan bersama dengan Mahlon dan menyimpulkan bahwa molekul RNA pemindah (RNA t) berperan dalam sintesis protein. Akhirnya, Francis Crick menemukan bahwa RNA pemindah harus mengenali urutan nukleotida untuk disusun sebagai asam amino sesuai pemesanan, yang kemudian dibawa oleh RNA pembawa pesan.
       Tahapan sintesis protein mengikuti aturan dogma sentral, dimana informasi genetik dipindahkan dari DNA ke DNA melalui tahap replikasi. Dari DNA ke RNA melalui tahap transkripsi. Selanjutnya
dari RNA ke protein melalui sintesis protein. Sebelum terjadi sintesis protein, DNA pada struktur nukleosom akan lepas dari protein histon oleh bantuan kerja enzim polimerase.
Mekanisme sintesis protein terjadi melalui dua tahap, yakni transkripsi dan translasi

1. Transkripsi

      Tahap pertama dari sintesis protein adalah transkripsi. Proses ini berlangsung di dalam inti sel. Transkripsi merupakan proses sintesis langsung RNA dari DNA. Pada saat inti sel memerintahkan perlunya sintesis protein, informasi DNA dialihkan melalui RNA pembawa pesan yang disebut RNA messenger (mRNA). mRNA berisikan salinan langsung pasangan basa dari DNA. Tahap inilah yang dinamakan dengan transkripsi. Transkrip berarti salinan. Kode genetik disalin dari DNA untuk dibawa keluar dari nukleus menuju lokasi
pembuatan protein di ribosom yang berada di sitoplasma. Urutan basa nitrogen yang dibawa ke luar nukleus dalam mRNA ini dinamakan sebagai kodon. Dalam proses transkripsi, banyak proses enzimatik yang terjadi, seperti pemutusan ikatan-ikatan hidrogen pada rantai DNA serta pembacaan urutan basa nitrogen yang prosesnya mirip dengan duplikasi DNA.
Proses transkripsi.png
Tahap inisiasi transkripsi dimulai dengan pengenalan daerah gen di DNA oleh enzim RNA polimerase. Daerah ini dinamakan dengan promoter, yakni tempat dimulainya sintesis pasangan DNA oleh mRNA. Daerah DNA yang disalin hanyalah satu bagian rantai saja yang dinamakan dengan sense (daerah template) dan rantai yang lainnya dinamakan rantai antisense. Pembacaan DNA
oleh RNA polimerase ini dimulai dari ujung 3' menuju ujung 5' dan tidak pernah sebaliknya. RNA polimerase akan membuka ikatan double helix pada bagian gen yang dikenali dan kemudian akan menyalin urutan basa yang ada pada DNA sense (template) sehingga terbentuk DNA baru dari arah ujung 5' menuju ujung 3'. Proses ini dinamakan dengan elongasi.
      Proses transkripsi diakhiri jika gen di daerah rantai template telah selesai dibaca (terdapat kodon stop). DNA memiliki mekanisme agar RNA polimerase dapat mengenali akhir dari gen dengan kode basa tertentu, daerah ini dikenal dengan nama terminator. Proses akhir dari transkripsi ini dinamakan dengan terminasi. Setelah itu, rantai mRNA akan keluar dari DNA menuju ribosom di sitoplasma (Campbell, et al, 2006:193).

2. Translasi

      mRNA mengandung urutan basa yang akan diterjemahkan menjadi protein (asam amino). Kode genetik, yang dibawa di dalamnya (kodon) dibaca dalam urutan tiga basa (triplet) menjadi protein. Proses penerjemahan kodon menjadi protein atau yang disebut dengan translasi. Langkah-langkah transkripsi dan translasi dapat diperhatikan pada gambar berikut.
Proses sintesis protein melibatkan mRNA dan tRNA..png

  Ribosom, sebagai tempat pembuatan protein terdiri atas dua bagian yang disebut subunit kecil dan subunit besar. Secara garis besar, translasi dibagi menjadi tiga tahap, yaitu inisiasi, elongasi, dan terminasi. Pada tahap inisiasi, mRNA akan menempel pada subunit kecil ribosom. Subunit kecil ini akan mengenali kode awal genetik AUG dari mRNA yang disebut sebagai start kodon. Subunit besar ribosom kemudian akan bergabung dengan subunit kecil membentuk kompleks ribosom.
     Proses penerjemahan ini dibantu oleh tRNA yang membawa pasangan kodon dari mRNA. Pasangan basa tRNA di ribosom ini dinamakan sebagai antikodon. tRNA akan datang membawakan pasangan basa yang sesuai dengan kodon dari mRNA. tRNA mengandung gugus asam amino yang sesuai dengan antikodon yang berada di ujung struktur rantai tunggal RNA.
     Tahapan selanjutnya adalah elongasi dari pembacaan kodon oleh tRNA sehingga terbentuk rantai polipeptida. Elongasi akan berhenti pada tahap pembacaan urutan basa spesifik yang memerintahkan proses translasi dihentikan (tahap terminasi). Urutan ini biasanya terdiri atas UAA, UAG, dan UGA yang dikenal dengan nama stop kodon.
Berikut adalah contoh bagaimana penerjemahan kodon pada mRNA terjadi sehingga dapat dihasilkan polipeptida.

a. DNA membentuk messenger RNA (membentuk pasangan) (mRNA). mRNA mentranskripsi kode genetik yang terdapat pada DNA
.Kode gen.png
b. mRNA keluar dari inti sel (nukleus) melalui retikulum endoplasma menuju ribosom dan menempelkan dirinya pada ribosom.
c. Di dalam sitoplasma tRNA mengadakan translasi kodon pada mRNA menjadi antikodon pada tRNA yang susunan antikodonnya seperti berikut.
kode.png
d. tRNA yang memiliki antikodon SGU akan mengangkut asam amino arginin, tRNA berantikodon ASG mengangkut treonin, dan tRNA berantikodon AAA mengangkut lisin.
e. tRNA mengangkut asam amino ke ribosom yang kemudian disusun menjadi polipeptida atau protein
f. Dalam pembentukkan polipeptida, asam amino yang satu digabung dengan asam amino yang lain oleh ikatan peptida. Proses ini berjalan terus sampai akhirnya ditemukan kodon, misalnya stop (UAG).

H. Fungsi Protein
Fungsi protein di dalam tubuh kita sangat banyak, bahkan banyak dari proses pertumbuhan tubuh manusia dipengaruhi oleh protein yang terkandung di dalam tubuh kita
a.     Sebagai Enzim
Hampir semua reaksi biologis dipercepat atau dibantu oleh suatu senyawa makromolekul spesifik yang disebut enzim, dari reaksi yang sangat sederhana seperti reaksi transportasi karbon dioksida sampai yang sangat rumit seperti replikasi kromosom. Protein besar peranannya terhadap perubahan-perubahan kimia dalam sistem biologis.
                        b.      Alat Pengangkut dan Penyimpan
Banyak molekul dengan MB kecil serta beberapa ion dapat diangkut atau dipindahkan oleh protein-protein tertentu. Misalnya hemoglobin mengangkut oksigen dalam eritrosit, sedangkan mioglobin mengangkut oksigen dalam otot. Pengatur pergerakan Protein merupakan komponen utama daging, gerakan otot terjadi karena adanya dua molekul protein yang saling bergeseran.
                        c.         Penunjang Mekanis
Kekuatan dan daya tahan robek kulit dan tulang disebabkan adanya kolagen, suatu protein berbentuk bulat panjang dan mudah membentuk serabut. Pertahanan tubuh atau imunisasi Pertahanan tubuh biasanya dalam bentuk antibodi, yaitu suatu protein khusus yang dapat mengenal dan menempel atau mengikat benda-benda asing yang masuk ke dalam tubuh seperti virus, bakteri, dan sel- sel asing lain.
                        d.       Media Perambatan Impuls Syaraf
Protein yang mempunyai fungsi ini biasanya berbentuk reseptor, misalnya rodopsin, suatu protein yang bertindak sebagai reseptor penerima warna atau cahaya pada sel-sel mata.
                        e.        Pengendalian Pertumbuhan
Protein ini bekerja sebagai reseptor (dalam bakteri) yang dapat mempengaruhi fungsi bagian-bagian DNA yang mengatur sifat dan karakter bahan.

I. Kelebihan dan Kekurangan Protein

a. Kelebihan Protein
Protein secara berlebihan tidak menguntungkan tubuh.Makanan yang tinggi proteinnya biasanya tinggi lemak sehingga dapat menyebabkan obesitas.Diet protein tinggi yang sering dianjurkan untuk menurunkan berat badan kurang beralasan. Kelebihan dapat menimbulkan masalah lain, terutama pada bayi. Kelebihan asam amino memberatkan ginjal dan hati yang harus memetabolisme dan mengeluarkan kelebihan nitrogen.
Kelebihan protein akan menimbulkan asidosis, dehidrasi, diare, kenaikan amoniak darah, kenaikan ureum darah, dan demam. Ini di lihat pada bayi yang di beri susu skim atau formula dengan konsentrasi tinggi, sehingga konsumsi protein mencapai 6 g/kg BB. Batas yang dianjurkan untuk konsumsi protein adalah dua kali Angaka Kecukupan Gizi (AKG) untuk protein.

b. Kekurangan protein
Kekurangan protein banyak terdapat pada masyarakat sosial ekonomi rendah. Kekurangan protein murni pada stadium berat menyebabkan Kwasiorkor pada anak-anak di bawah lima tahun (balita). Kekurangan protein sering ditemukan secara bersamaan dengan kekurangan energi yang menyebabkan kondisi yang dinamakan Marasmus.

a
)      Kwashiorkor
Istilah Kwashiorkor pertama kali diperkenalkan oleh Dr. Cecily Williams pada tahun 1933, ketika ia menemukan keadaan ini di Ghana, Afrika. Dimana dalam bahasa Ghana, Kwashiorkor artinya penyakit yang diperoleh anak pertama, bila anak kedua sedang di tunggu kelahirannya. Kwashiorkor lebih banyak terdapat pada usia dua hingga tiga tahun yang sering terjadi pada anak yang terlambat menyapih, sehingga komposisi gizi makanan tidak seimbang terutama dalam hal protein. Kwashiorkor dapat terjadi pada konsumsi energi yang cukup atau lebih.

Gejalanya :
·         pertumbuhan terhambat
·         otot-otot berkurang dan lemah.
·         edema.
·         muka bulat seperti bulan (moonface)
·         gangguan psikimotor.

Ciri khas dari Kwashiorkor yaitu terjadinya edema di perut, kaki dan tangan.Kehadiran Kwashiorkor erat kaitannya dengan albumin serum.Pada Kwashiorkor gambaran klinik anak sangat berbeda. Berat badan tidak terlalu rendah, bahkan dapat tertutup oleh adanya edema, sehingga penurunan berat badan relatif tidak terlalu jauh, tetapi bila pengobatan edema menghilang, maka berat badan yang rendah akan mulai menampakkan diri. Biasanya berat badan tersebut tidak sampai di bawah 60 % dari berat badan standar bagi umur yang sesuai.
Ciri-ciri :
·         Rambut halus, jarang, dan pirang kemerahan kusam.
·         Kulit tampak kering (Xerosis) dan memberi kesan kasar dengan garis-garis permukaan yang jelas.
·         Di daerah tungkai dan sikut serta bokong terdapat kulit yang menunjukkan Hyperpigmentasi dan kulit dapat mengelupas dalam lembar yang besar, meninggalkan dasar yang licin berwarna putih mengkilap.
·         Perut anak membuncit karena pembesaran hati.
·         Pada pemeriksaan mikroskopik terdapat perlemkan sel – sel hati.


b)     Marasmus
Marasmus berasal dari kata Yunani yang berarti wasting merusak.Marasmus umumnya merupakan penyakit pada bayi (12 bulan pertama), karena terlambat di beri makanan tambahan.Hal ini dapat terjadi karena penyapihan mendadak, formula pengganti ASI terlalu encer dan tidak higienis atau sering terkena infeksi.Marasmus berpengaruh dalam waktu yang panjang terhadap mental dan fisik yang sukar diperbaiki.Marasmus adalah penyakit kelaparan dan terdapat banyak di antara kelompok sosial ekonomi rendah di sebagian besar negara sedang berkembang dan lebih banyak dari Kwashiorkor.
Gejalanya :
·         Pertumbuhan terhambat.
·         Lemak di bawah kulit berkurang.
·         Otot – otot berkurang dan melemah.
·         Berat badan lebih banyak terpengaruh dari pada ukuran kerangka, seperti : panjang, lingkar kepala dan lingkar dada.
·         Muka seperti orang tua (Oldman’s Face).

Pada penderita Marasmus biasanya tidak ada pembesaran hati (Hepatomegalia) dan kadar lemak serta kolesterol di dalam darah menurun. Suhu badan juga lebih rendah dari suhu anak sehat dan anak tergeletak in – aktif, tidak ada perhatian bagi keadaan sekitarnya.

























BAB III
PENUTUP
A.    Kesimpulan

1. Protein adalah senyawa organik kompleks yang mempunyai bobot molekul tinggi yang merupakan polimer dari monomer-monomer asam amino yang dihubungkan satu sama lain dengan ikatan peptida.
2. Komponen penyusun protein terdiri dari :Alanin (alanine), Arginin (arginine), Asparagin (asparagine), Asam aspartat (aspartic acid), Sistein (cystine), Glutamin (Glutamine), Asam glutamat (glutamic acid), Glisin (Glycine), Histidin (histidine), Isoleusin (isoleucine), Leusin (leucine), Lisin (Lysine), Metionin (methionine), Fenilalanin (phenilalanine), Prolin (proline), Serin (Serine), Treonin (Threonine), Triptofan (Tryptophan), Tirosin (tyrosine), dan Valin (valine)
3. Ikatpeptidaan antara asam amino yang satu dengan lainnya disebut ikatan
4. Struktur protein ada 4 tingkatan yaitu :Struktur primer, Struktur sekunder, Struktur tersier, Struktur kuartener.
5. Sintese protein dilakukan dengan bantuan enzim di system pencernaan, protein diuraikan menjadi peptidpeptid yang strukturnya diuraikan lebih sederhana.
6. Fungsi protein: katalisis enzimatik, transportasi dan penyimpanan, koordinasi gerak, penunjang mekanis, proteksi imun, Membangkitkan dan menghantarkan impuls saraf, Pengaturan pertumbuhan dan diferensiasi.
7. Keuntungan dan kekurangan protein bagi tubuh:
Keuntungan protein: Menyediakan bahan-bahan yang penting peranannya untuk pertumbuhan dan memelihara jaringan tubuh, Mengatur kelangsungan proses di dalam tubuh, Memberi tenaga jika keperluannya tidak dapat dipenuhi oleh karbohidrat dan lemak.Sumber energy, Pembetukan dan perbaikan sel dan jaringan, Sebagai sintesis hormon,enzim, dan antibody, Pengatur keseimbangan kadar asam basa dalamsel.
Kekurangan Protein yaitu, kerontokan rambut, yang paling buruk ada yang disebut dengan kwasiorkor, penyakit kekurangan protein, kekurangan yang terus menerus menyebabkan marasmus dan berkibat kematian
B.     Saran
       kami sebagai penulis mengucapkan terima kasih kapada para pembaca makalah ini yang telah berkanan membaca makalah ini, khususnya mahasiswa mahasiswi yang mempelajari makalah ini. Mungkin makalah ini masih jauh dari sempurna karena masih banyak di temukan banyak kesalahan di sana sini. Untuk itu kami sebagai penulis mengucapkan maaf yang sebesar besar nya dan juga kami memohon krtik serta sarannya yang bersifat membangun.
















DAFTAR PUSTAKA
Anonim . 2016. Protein .http://www.wikipedia.com. Diakses Tanggal 21Maret     2016.
Dosen, Tim. 2014 . Biokimia .UVRI : Makassar
Martohargono, S. 1984. Biokimia. Gadjah Mada University Press : Yogyakarta
Poedjiadi, Anna. 1994. Dasar-Dasar Biokimia. UI Press : Jakarta
Supardan.  1989.  Protein,  Malang:  Lab.  Biokimia  Universitas
            Brawijaya